Enantioselective Addition of Diethylzinc to Benzaldehyde by Catalysts of Chiral Heterocyclic Ligands

Yan HE, Yue Lan LI, Ye Di GUAN*

Department of Chemistry, Peking University, Beijing 100871

Abstract: Several kinds of chiral heterocyclic ligands without hydroxyl group have been synthesized and used as catalysts for the asymmetric addition of diethylzinc to benzaldehyde. These ligands promoted the formation of (*S*)-1-phenylpropanols in good yields and medium to good enantioselectivities ($50 \sim 86\%$ ee.).

Keywords: Chiral heterocyclic ligands, hydroxyl group, asymmetric catalysis, enantioselectivity.

The enantioselective addition of diethylzinc reagents to prochiral carbonyl group has been achieved principally by catalytical amount of chiral β -amino alcohols which have proven to be highly effective catalysts¹. A hydroxyl group has been regarded to be necessary for the chiral ligand to form a zinc alkoxide as the catalytic species². We wish to report herein on the ethylation of benzaldehyde with diethylzinc promoted by several kinds of oxazolidine and thiazolidine derivatives which do not contain hydroxyl group. Four kinds chiral heterocyclic ligands we used are listed as follows:

Chiral oxazolidine derivatives L_1 was synthesized from (1R, 2S)-(-)-ephedrine.

We synthesized (*R*)-3-(α -phenyl ethyl)-3,4-dihydro-2H-benzo[e][1,3]oxazine L_2 from (*R*)- α -phenylethylamine. The compounds (4*R*,5*S*)-1-aza-3,7-dioxabicyclic[3.3.0]-6-phenyl octanes L_3 was prepared from (1*R*,2*S*)-1-phenyl-2-amino-1,3-propanyldiol and formaldehyde. The ester derivatives of [1,3]-thiazolidine-4-carboxylic acid L_4 - L_8 were synthesized from L-cysteine. Yan HE et al.

 Table 1
 Enantioselective addition of diethylzinc to benzaldehyde by catalysis with chiral ligands

Entry	Ligand	T(℃)	mol%	t(h)	Yield(%)	[α] ²⁴ _D	Config.	%ee
1	L1	15	8	36	68	+23.5	R	51
2	L2	18	8	48	41	-19.2	S	41
3	L3	18	8	24	51	-19.4	S	41
4	L4	15	8	24	100	-28.9	S	62
5	L4	20	8	24	90	-31.2	S	66
6	L5	20	11	48	56	-29.6	S	63
7	L6	20	8	24	79	-35.6	S	76
8	L6	20	16	24	87	-38.0	S	80
9	L7	20	8	48	50	-34.0	S	72
10	L7	20	12	48	60	-32.0	S	68
11	L7	20	16	48	92	-40.2	S	86
12	L8	18	8	24	50	-14.5	S	31

Based on the reported value of [α]_D and 'H-NMR spectrum (*S*)-1-phenyl propanols in the presence of a shift reagent Eu(tfc)₃ (400HzNMR, ARX). Reported value for (*S*)-1-phenylpropanol in 99%ee. is [α]_D²⁰47 (C = 2.25,hexane) (according to the result of Aldrich Co.)

Enantioselective addition of diethylzinc to benzaldehyde (1 mol) in the presence of catalytic amounts (0.08-0.16 mol) of chiral ligands L_{1-8} was carried out generally in toluene-hexane(1:1) at room temperature, using 2.4 mol of diethylzinc for 24-48 h. Even though the exact mechanism of catalysis by the heterocyclic ligands containing no hydroxyl is not yet clear, the above described observations are encouraging in searching for new chiral promoters which were easily prepared for catalytic enantioselective synthesis.

References

- 1. K. Soai, S. Niwa, Chem. Rev. , 1992, 92, 833.
- 2. M. Yamakawa, R. Noyori, J. Am. Chem. Soc. , 1995, 117, 6327.

Received 8 March 1999